| 代表性论文 | 
|---|
| [1] Z. Zhang,M.Zhai, J.Tong, Q. Zhang, Some characterizations for Brownian motion with Markov switching,  Nonlinear Analysis: Hybrid Systems, 2021,42(101086),21pages. | 
| [2] Z. Zhang, J. Tong,Q. Meng, Y. Liang,  Population dynamics driven by stable processes  with Markovian switching,Journal of Applied Probability,2021,58:505-522 | 
| [3] Z.Zhang, T. Zhou, X. Jin, J. Tong, Convergence of the Euler-Maruyama method for CIR model with Markovian switching, Mathematics and Computers in Simulation, 2020,17:192-210. | 
| [4] Z Zhang, J. Cao, J. Tong, E. Zhu, Ergodicity of CIR type SDEs driven by stable processes with random switching, Stochastics, 2020, 92(5):761-784 | 
| [5] L. Yan, W. Pei, Z. Zhang, Exponential stability of SDEs driven by FBM with Markovian switching, Discrete and Continuous Dynamical Systems, Series A, 2019, 39(11):66467-6483 | 
| [6] Z.Zhang, J.Tong, L.Hu, Ultracontractivity for Brownian motion with Markov switching, Stochastic Analysis & Applications, 2019, 37(3):445-457 | 
| [7] Z. Zhang, H. Yang, J. Tong, L. Hu, Necessary and sufficient condition of CIR type SDEs with Markov switching, Stochastic and Dynamics, 2019, 18(5), 1950023, 26 pages. | 
| [8] Z. Zhang, E. Zhang, J. Tong, Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching, Discrete and Continuous Dynamical Systems Series B, 2018, 23: 2433-2455 | 
| [9] Z. Zhang, X.  Jin,  J.  Tong,  Ergodicity and transience of SDEs driven by stable processes with Markov switching, Applicable Analysis, 2018, 97(7):1187-1208 | 
| [10] J. Tong, X., Jin, Z. Zhang, Exponential ergodicity for SDEs driven by  -stable processes with Markov switching in  Wasserstein distances, Potential Analysis, 49:503-526, 2018. | 
| [11] Z. Zhang, X. Zhang, J. Tong, Exponential ergodicity for population dynamics driven by stable processes, Statistics & Probability Letters, 2017, 125: 149-159 | 
| [12] J.Tong, Z.Zhang, Exponential ergodicity of CIR interest rate model with  switching, Stochastic and Dynamics, 201717(5), 1750037, 20pages. | 
| [13] X. Jin, Z. Zhang, Ergodicity of generalized Ait-Sahalia-type interest rate model, Communications in Statistics- Theory and Methods, 2017, 46(16):8199-8209. | 
| [14] Z. Zhang, W. Wang, The stationary distribution of Ornstein-Uhlenbeck process with Markov switching, Communications in Statistics- Simulation and Computation, 2017, 46(6):4783-4794. | 
| [15] Z.Zhang, J. Tong, L. Hu, Long-term behavior of stochastic interest rate models with Markov switching, Insurance: Mathematics and Economics, 2016, 70, 320-326, | 
| [16] Z. Zhang,J. Tong, J. Bao,The stationary distribution of the facultative population model with a degenerate noise,Statistics & Probability Letters,2013,83(2):655-664. | 
| [17] Z. Zhang, J.Zou, Y.Liu,  The Maximum surplus distribution before Ruin in an Erlang(n) risk process perturbed by diffusion. Acta Mathematica Sinica, 2011, 27(9): 1869-1880 | 
| [18] Z. Zhang, J.Tong, Censoring technique applied to a MAP/G/1 queue with set-up time and multiple vacations. Taiwan Journal of Mathematics, 2011, 15(2):607-622. | 
| [19] J.Tong, Z. Zhang, R. Dai, Weighted scale-free networks induced by group preferential mechanism. Physica A: Statistical Mechanics and its Applications, 2011, 390(10):1826-1833. | 
| [20] J. Tong, Z. Hou, Z.Zhang, Degree correlations in group preferential model.  Journal of Physics A: Mathematical and Theoretical, 2009, 42: 275002-275011. | 
| [21] J.Zou, Z. Zhang, J.,Zhang, Optimal dividend payouts under jump diffusion  processes. Stochastic Models, 2009, 25(2): 332-347. | 
| [22] Z. Hou, J.Tong,  Z. Zhang, Convergence of jump-diffusion non-linear differential equation with semi-Markovian switching.   Applied Mathematical Modeling, 2009, 33(9):3650-3660. | 
| 主持在研项目 | 
|---|
| 2021/01-2022/12 混杂纯跳过程的遍历性及其应用,科技部,在研 | 
| 2022/01-2025/12 混杂纯跳过程的长时间行为及相关问题,国家自然科学基金,在研 |